Generating unlabeled connected cubic planar graphs uniformly at random
نویسندگان
چکیده
We present an expected polynomial time algorithm to generate an unlabeled connected cubic planar graph uniformly at random. We first consider rooted connected cubic planar graphs, i.e., we count connected cubic planar graphs up to isomorphisms that fix a certain directed edge. Based on decompositions along the connectivity structure, we derive recurrence formulas for the exact number of rooted cubic planar graphs. This leads to rooted 3-connected cubic planar graphs, which have a unique embedding on the sphere. Special care has to be taken for rooted graphs that have a sensereversing automorphism. Therefore we introduce the concept of colored networks, which stand in bijective correspondence to rooted 3-connected cubic planar graphs with given symmetries. Colored networks can again be decomposed along the connectivity structure. For rooted 3-connected cubic planar graphs embedded in the plane, we switch to the dual and count rooted triangulations. Since all these numbers can be evaluated in polynomial time using dynamic programming, rooted connected cubic planar graphs can be generated uniformly at random in polynomial time by inverting the decomposition along the connectivity structure. To generate connected cubic planar graphs without a root uniformly at random, we apply rejection sampling and obtain an expected polynomial time algorithm.
منابع مشابه
Sampling Unlabeled Biconnected Planar Graphs
We present an expected polynomial time algorithm to generate a 2-connected unlabeled planar graph uniformly at random. To do this we first derive recurrence formulas to count the exact number of rooted 2-connected planar graphs, based on a decomposition along the connectivity structure. For 3-connected planar graphs we use the fact that they have a unique embedding on the sphere. Special care h...
متن کاملGenerating Labeled Planar Graphs Uniformly at Random
We present an expected polynomial time algorithm to generate a labeled planar graph uniformly at random. To generate the planar graphs, we derive recurrence formulas that count all such graphs with vertices and edges, based on a decomposition into 1-, 2-, and 3-connected components. For 3-connected graphs we apply a recent random generation algorithm by Schaeffer and a counting formula by Mulli...
متن کاملRandom cubic planar graphs
We show that the number of labeled cubic planar graphs on n vertices with n even is asymptotically αnρn!, where ρ . = 3.13259 and α are analytic constants. We show also that the chromatic number of a random cubic planar graph that is chosen uniformly at random among all the labeled cubic planar graphs on n vertices is three with probability tending to e /4! . = 0.999568, and is four with probab...
متن کاملGenerating Outerplanar Graphs Uniformly at Random
We show how to generate labeled and unlabeled outerplanar graphs with n vertices uniformly at random in polynomial time in n. To generate labeled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labeled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursiv...
متن کاملNonhamiltonian 3-Connected Cubic Planar Graphs
We establish that every cyclically 4-connected cubic planar graph of order at most 40 is hamiltonian. Furthermore, this bound is determined to be sharp and we present all nonhamiltonian such graphs of order 42. In addition we list all nonhamiltonian cyclically 5-connected cubic planar graphs of order at most 52 and all nonhamiltonian 3-connected cubic planar graphs of girth 5 on at most 46 vert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 32 شماره
صفحات -
تاریخ انتشار 2008